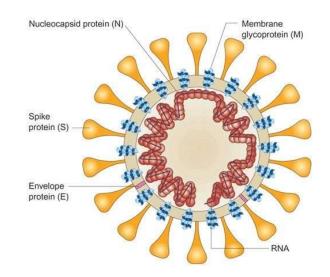
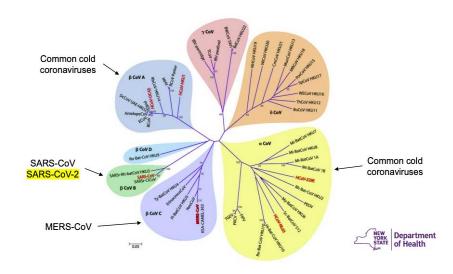



NOVEL CORONAVIRUS (COVID-19)

Department of Internal Medicine Division of Infectious Diseases

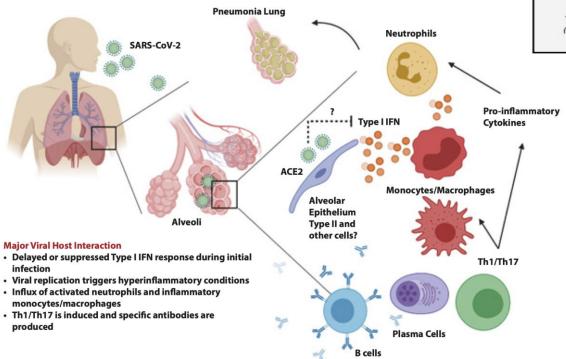

NOVEL CORONAVIRUS (COVID-19)

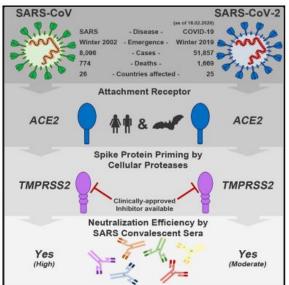

BIOLOGY

Department of Internal Medicine Division of Infectious Diseases

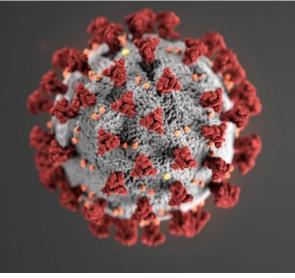
Coronaviruses

- Single-stranded, lipid coated RNA viruses
- Human Coronaviruses (responsible for 25% of common colds):
 - Alphacoronavirus: NL63, 229E
 - Betacoronavirus: HKU1, OC43
- Animal Coronaviruses:
 - ALL Betacoronaviruses
 - SARS CoV-1 (2002-2004)
 - MERS CoV (2012-2015)
 - SARS CoV-2 (2019-)
- Rarely cause primary viral pneumonia or predispose to secondary bacterial pneumonia.



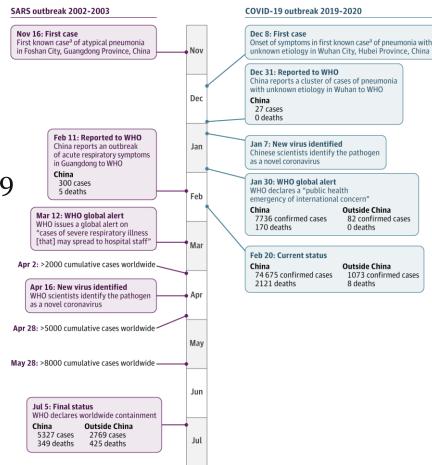


Hoffmann et al. Cell 2020 ICTV. Nature Microbiol. 2020


SARS-CoV-2

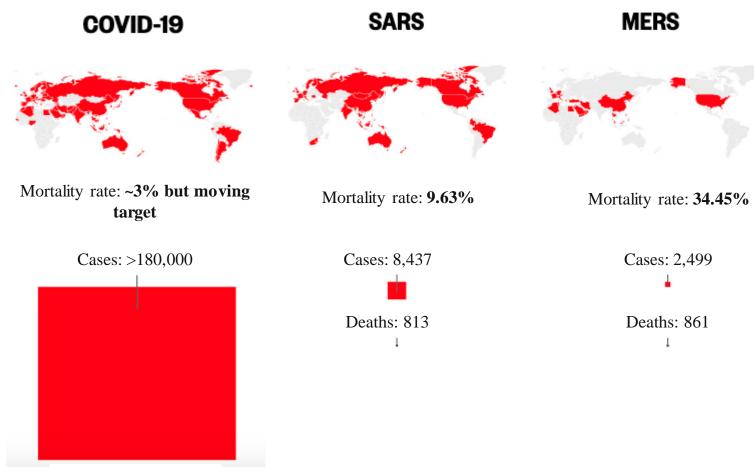
- Virus binds to the angiotensinconverting enzyme site (ACE2) in the respiratory epithelium
- Infects both the upper and lower respiratory tracts

Hoffmann et al. Cell 2020 Prompetchara et al. APJI. 2020


NOVEL CORONAVIRUS (COVID-19)

EPIDEMIOLOGY

Department of Internal Medicine Division of Infectious Diseases


Timeline

- Dec 8: First Case Identified
- Dec 26: First Cluster recognized in Wuhan
- Jan 7: New Virus Identified
 - SARS-CoV-2 as cause of COVID-19
- Jan 20: First confirmed human-tohuman transmission
- Jan 30: WHO Public Health Emergency of International Concern declared
- Jan 31: US declares Public Health Emergency
- Diamond Princess, South Korea, Italy
- March 11: Pandemic Declared

Wu et al. JAMA. 2020

SARS-CoV-2 compared to past epidemics

Deaths: > 7,000

Global Map with Confirmed Cases

Total Confirmed Total Deaths Total Recovered 80,630

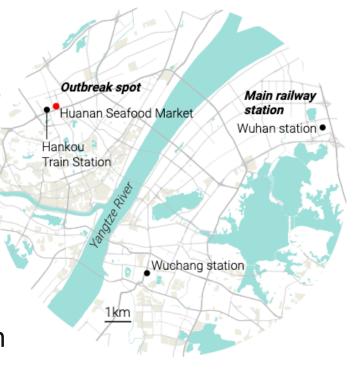
JHU CSSE


Current Global Situation

Most western countries are on the same coronavirus trajectory. Hong Kong and Singapore have so far limited the spread; S Korea is slowing its progress

Financial Times, 3/14/20

US Map with Confirmed Cases


CDC

Source and Spread

 First detected in Wuhan City, Hubei Province, China

 First infections were linked to a live animal market (December 2019)

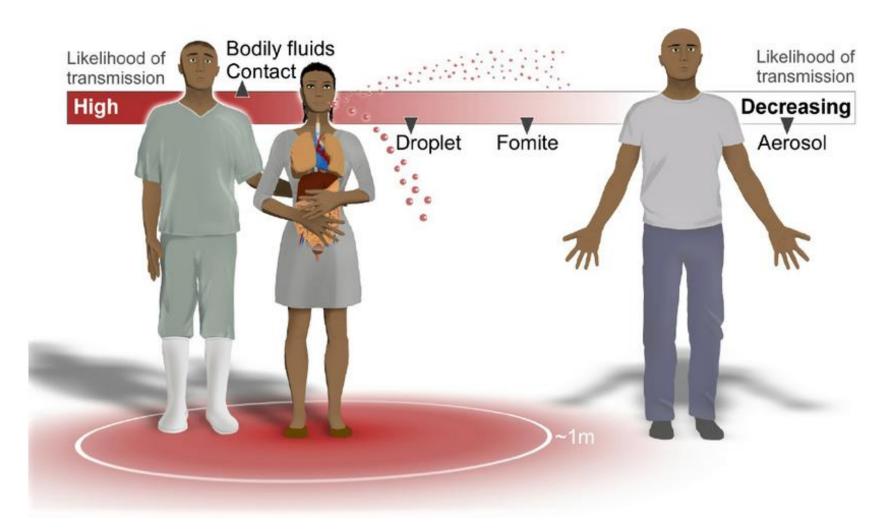
- Animal source remains uncertain: bats > pangolin
- The virus is now spreading worldwide
- We are still learning how it spreads and to what extent it may spread in the US

CDC.Gov South China Morning Post

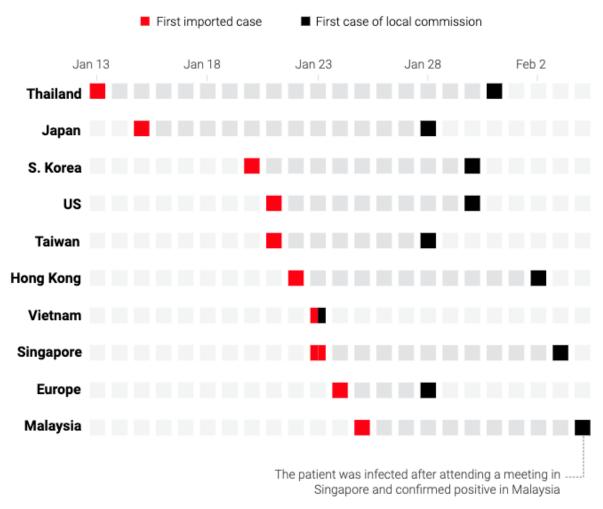
Transmission

Transmission is thought to occur

- Mainly, person-to-person via respiratory droplets
 - Asymptomatic transmission is possible but the contribution to overall number of illness appears to be small
- Close personal contact (within ~6 feet or 2 meters)
- Touching an object/surface with virus and then touching your mouth, nose or eyes
- No perinatal transmission yet observed


Bodily fluids related to spread of SARS-CoV-2

Very limited data are available but RNA has been detected:


- Upper and lower respiratory tract specimens and BAL fluid
- Blood and stool specimens show live virus, but no epidemiologic evidence of fecal-oral transmission

CDC.gov

Transmission

Imported and local cases

South China Morning Post

Survival on surfaces

Not certain, generally up to 48 hrs on solid surfaces but can be up to 9 days on other surfaces

Other coronaviruses survival on surfaces:

- Temp, humidity, type of surface
- Easily disinfected with EtOH, peroxide, bleach

Persistence of coronaviruses on different types of inanimate surfaces

Type of surface	Virus	Strain / isolate	Inoculum (viral titer)	Temperature	Persistence	Reference
Steel	MERS-CoV	Isolate HCoV-EMC/2012	10 ⁵	20°C	48 h	[21]
				30°C	8-24 h	
	TGEV	Unknown	10 ⁶	4°C	≥ 28 d	[22]
				20°C	3-28 d	
				40°C	4-96 h	
	MHV	Unknown	10 ⁶	4°C	≥ 28 d	[22]
				20°C	4-28 d	
				40°C	4-96 h	
	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Aluminium	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	2-8 h	[24]
Metal	SARS-CoV	Strain P9	10 ⁵	RT	5 d	[25]
Wood	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
Paper	SARS-CoV	Strain P9	10 ⁵	RT	4-5 d	[25]
	SARS-CoV	Strain GVU6109	10 ⁶	RT	24 h	[26]
			10 ⁵		3 h	
			10⁴		< 5 min	
Glass	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Plastic	SARS-CoV	Strain HKU39849	10 ⁵	22°-25°C	≤ 5 d	[27]
	MERS-CoV	Isolate HCoV-EMC/2012	10 ⁵	20°C	48 h	[21]
				30°C	8-24 h	
	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
	SARS-CoV	Strain FFM1	10 ⁷	RT	6-9 d	[28]
	HCoV	Strain 229E	10 ⁷	RT	2-6 d	[28]
PVC	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Silicon rubber	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Surgical glove (latex)	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	≤ 8 h	[24]
Disposable gown	SARS-CoV	Strain GVU6109	10 ⁶	RT	2 d	[26]
-			10 ⁵		24 h	
			10⁴		1 h	
Ceramic	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Teflon	HCoV	Strain 229E	10 ³	21°C	5 d	[23]

 $MERS = Middle \ East \ Respiratory \ Syndrome; \ HCoV = human \ coronavirus; \ TGEV = transmissible \ gastroenteritis \ virus; \ MHV = mouse \ hepatitis \ virus; \ SARS = Severe \ Acute \ Respiratory \ Syndrome; \ RT = room \ temperature.$

Kampf G, et al. J Hosp. Infect 2020; 31 January (In press)

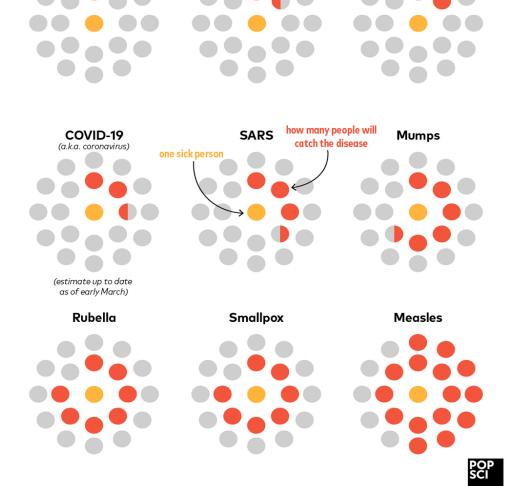
Virus shedding

- Highest early in the course of disease (vs SARS which peaks at 5 days after onset)
- Shedding can occur in the 24-48 hrs prior to symptoms onset and continues for 7-12 days in mild/mod cases and for >2 weeks in severe cases
- Patients who recover can be PCR positive after symptoms resolve from 1-4 weeks, but unknown if this equals presence of infectious virus

Basic Facts Reproduction

R0 (R-nought) SARS-

CoV-2: 2.5

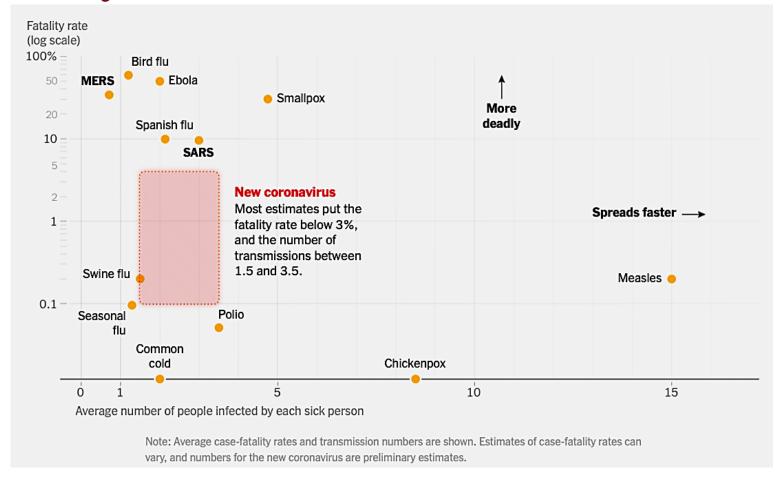

R0 Influenza: 1.3

R0 Ebola: 2

R0 SARS: 4

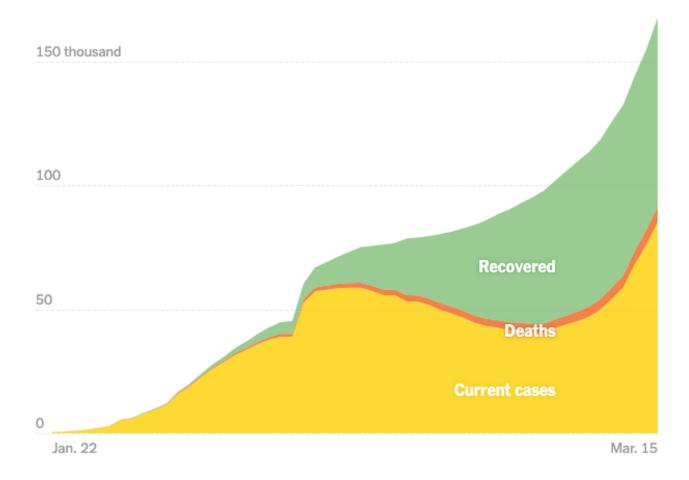
Case Doubling Time: 5.7

days

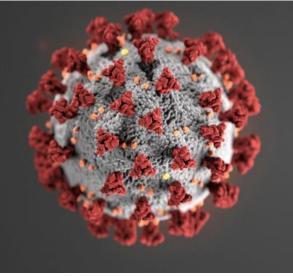


Influenza

MERS


Ebola

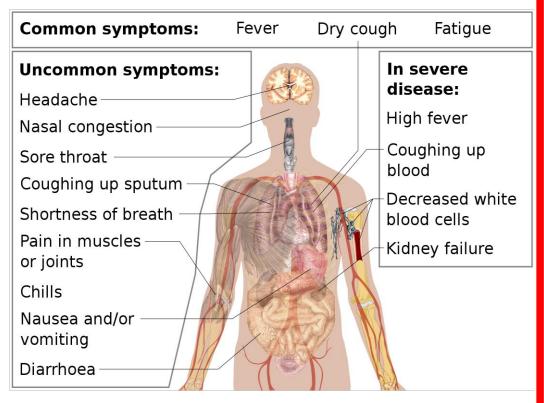
Estimates of transmission and fatality rate

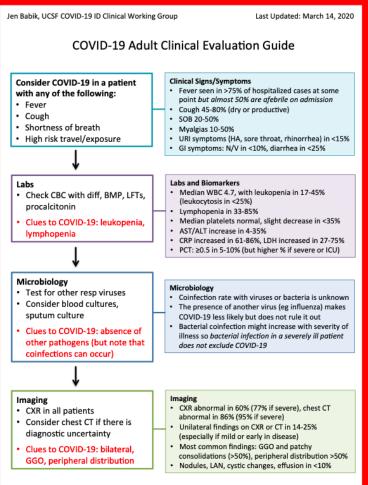

Sheikh, et al. New York Times 07-Feb-2020

Current cases, Recovered and Deaths

Source: Center for Systems Science and Engineering at Johns Hopkins University; Local governments.

New York Times

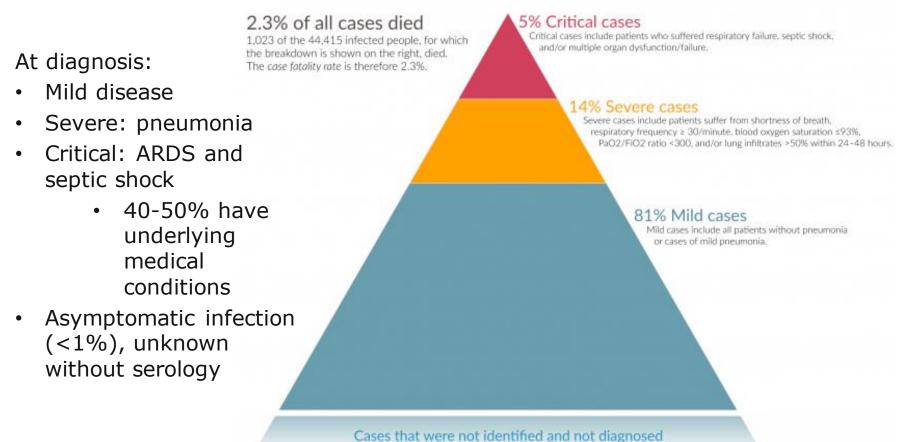



NOVEL CORONAVIRUS (COVID-19)

CLINICAL PRESENTATION

Department of Internal Medicine
Division of Infectious Diseases

Clinical features


Wu et al. JAMA. 2020

Clinical Spectrum

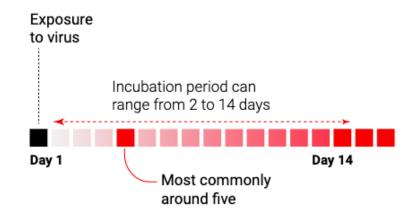
Coronavirus [COVID-19]: the severity of diagnosed cases in China

Our World in Data

Descriptions of 44,415 confirmed cases of COVID-19 nationwide in China. Included are confirmed cases in the early period of the outbreak of the disease up to February 11, 2020.

Guan WJ et al. N Engl J Med. 2020 Feb 28; CDC

Aylward B et al, WHO-China Mission, 2020


Progression

Most common presentation: 1 week prodrome of myalgias, malaise, cough, low grade fever that progress gradually leading to dyspnea in 2nd week

- 10-15% of mild/moderate cases become severe
- 15-20% become critical

Average times:


- Median incubation period estimated 4-6 days (range 2-14 days)
- From exposure to symptom onset:2-9 days (median of 5)
- From symptom onset to recovery:
 - Mild cases: 2 weeks
 - Severe cases: 3-6 weeks

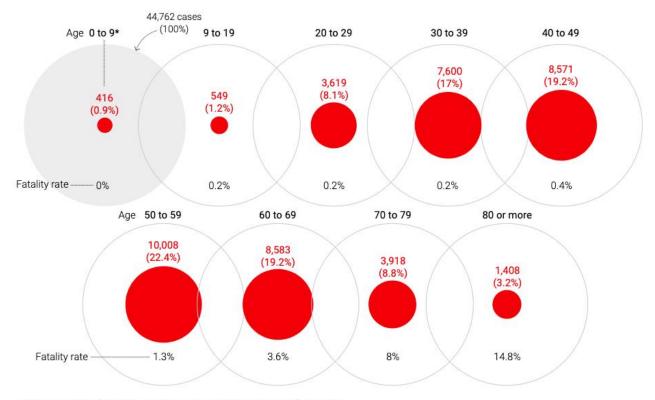
Aylward B et al, WHO-China Mission, 2020 South China Morning Post

Who Gets Symptomatic Infection?

Based on >44,000 cases

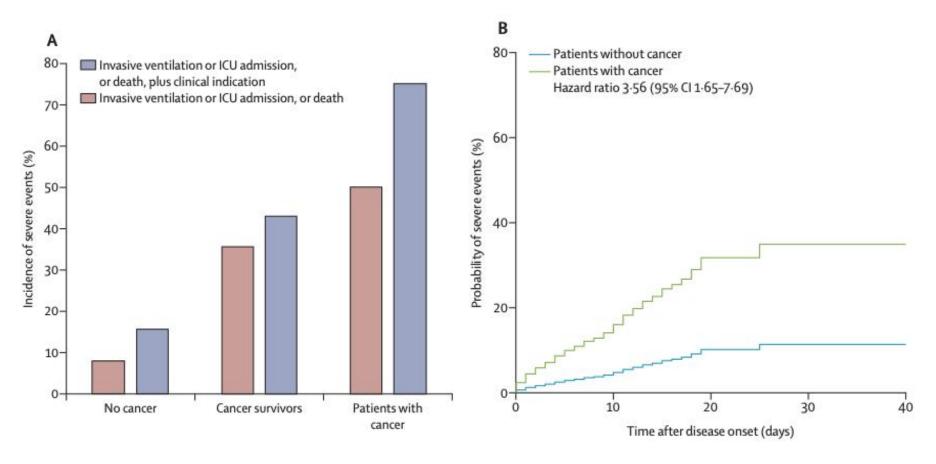
China CDC Weekly. 2020

Determinants of outcome


- Comorbidity and advanced age increase risk for severe illness and death
- Immunocompromised no data present

			AGE	DEATH RATE confirmed	DEATH RATE all cases
PRE-EXISTING CONDITION	DEATH RATE confirmed cases	DEATH RATE all cases		cases	
			80+ years old	21.9%	14.8%
Cardiovascular disease	13.2%	10.5%	70-79 years old		8.0%
Diabetes	9.2%	7.3%	60-69 years old		3.6%
Chronic respiratory disease	8.0%	6.3%	50-59 years old		1.3%
Hypertension	8.4%	6.0%	40-49 years old		0.4%
Cancer	7.6%	5.6%	30-39 years old		0.2%
no pre-existing conditions		0.9%	20-29 years old		0.2%
			10-19 years old		0.2%
			0-9 years old		no fatalities

Chinese Center for Disease Control and Prevention (11 Feb 2020)


Fatality rate in mainland China by age range

*The 416 cases of children aged nine years or below, account for 0.9 per cent of the total, with zero fatalities

South China Morning Post

Special Populations – Patients with Cancer

Liang et al. Lancet Oncology. 2020

Key Findings

Radiographic:

- CXR = Bilateral patchy shadowing
- CT = Ground glass opacity

Laboratory:

- Lymphopenia (with either leukocytosis or leukopenia)
- Inflammatory markers are not as consistent

Table 2. Radiographic and Laboratory Findings.*					
Variable	All Patients (N=1099)	Disease Severity		Presence of Composite Primary End Point	
		Nonsevere (N = 926)	Severe (N = 173)	Yes (N = 67)	No (N=1032)
Radiologic findings					
Abnormalities on chest radiograph — no./total no. (%)	162/274 (59.1)	116/214 (54.2)	46/60 (76.7)	30/39 (76.9)	132/235 (56.2)
Ground-glass opacity	55/274 (20.1)	37/214 (17.3)	18/60 (30.0)	9/39 (23.1)	46/235 (19.6)
Local patchy shadowing	77/274 (28.1)	56/214 (26.2)	21/60 (35.0)	13/39 (33.3)	64/235 (27.2)
Bilateral patchy shadowing	100/274 (36.5)	65/214 (30.4)	35/60 (58.3)	27/39 (69.2)	73/235 (31.1)
Interstitial abnormalities	12/274 (4.4)	7/214 (3.3)	5/60 (8.3)	6/39 (15.4)	6/235 (2.6)
Abnormalities on chest CT — no./total no. (%)	840/975 (86.2)	682/808 (84.4)	158/167 (94.6)	50/57 (87.7)	790/918 (86.1)
Ground-glass opacity	550/975 (56.4)	449/808 (55.6)	101/167 (60.5)	30/57 (52.6)	520/918 (56.6)
Local patchy shadowing	409/975 (41.9)	317/808 (39.2)	92/167 (55.1)	22/57 (38.6)	387/918 (42.2)
Bilateral patchy shadowing	505/975 (51.8)	368/808 (45.5)	137/167 (82.0)	40/57 (70.2)	465/918 (50.7)
Interstitial abnormalities	143/975 (14.7)	99/808 (12.3)	44/167 (26.3)	15/57 (26.3)	128/918 (13.9)
Laboratory findings					
Median Pao ₂ :Fio ₂ ratio (IQR)†	3.9 (2.9-4.7)	3.9 (2.9-4.5)	4.0 (2.8-5.2)	2.9 (2.2-5.4)	4.0 (3.1-4.6)
White-cell count					
Median (IQR) — per mm³	4700 (3500– 6000)	4900 (3800–6000)	3700 (3000–6200)	6100 (4900–11,100)	4700 (3500– 5900)
Distribution — no./total no. (%)					
>10,000 per mm ³	58/978 (5.9)	39/811 (4.8)	19/167 (11.4)	15/58 (25.9)	43/920 (4.7)
<4000 per mm ³	330/978 (33.7)	228/811 (28.1)	102/167 (61.1)	8/58 (13.8)	322/920 (35.0)
Lymphocyte count					
Median (IQR) — per mm³	1000 (700–1300)	1000 (800–1400)	800 (600–1000)	700 (600–900)	1000 (700–1300)
Distribution — no./total no. (%)					
<1500 per mm ³	731/879 (83.2)	584/726 (80.4)	147/153 (96.1)	50/54 (92.6)	681/825 (82.5)
Platelet count					
Median (IQR) — per mm³	168,000 (132,000-207,000)	172,000 (139,000–212,000)	137,500 (99,000–179,500)	156,500 (114,200–195,000)	169,000 (133,000–207,000)
Distribution — no./total no. (%)					
<150,000 per mm ³	315/869 (36.2)	225/713 (31.6)	90/156 (57.7)	27/58 (46.6)	288/811 (35.5)
Median hemoglobin (IQR) — g/dl‡	13.4 (11.9–14.8)	13.5 (12.0-14.8)	12.8 (11.2–14.1)	12.5 (10.5-14.0)	13.4 (12.0-14.8)
Distribution of other findings — no./total no. (%)					
C-reactive protein ≥10 mg/liter	481/793 (60.7)	371/658 (56.4)	110/135 (81.5)	41/45 (91.1)	440/748 (58.8)
Procalcitonin ≥0.5 ng/ml	35/633 (5.5)	19/516 (3.7)	16/117 (13.7)	12/50 (24.0)	23/583 (3.9)
Lactate dehydrogenase ≥250 U/liter	277/675 (41.0)	205/551 (37.2)	72/124 (58.1)	31/44 (70.5)	246/631 (39.0)
Aspartate aminotransferase >40 U/liter	168/757 (22.2)	112/615 (18.2)	56/142 (39.4)	26/52 (50.0)	142/705 (20.1)
Alanine aminotransferase >40 U/liter	158/741 (21.3)	120/606 (19.8)	38/135 (28.1)	20/49 (40.8)	138/692 (19.9)
Total bilirubin >17.1 μmol/liter	76/722 (10.5)	59/594 (9.9)	17/128 (13.3)	10/48 (20.8)	66/674 (9.8)
Creatine kinase ≥200 U/liter	90/657 (13.7)	67/536 (12.5)	23/121 (19.0)	12/46 (26.1)	78/611 (12.8)
Creatinine ≥133 µmol/liter	12/752 (1.6)	6/614 (1.0)	6/138 (4.3)	5/52 (9.6)	7/700 (1.0)
D-dimer ≥0.5 mg/liter	260/560 (46.4)	195/451 (43.2)	65/109 (59.6)	34/49 (69.4)	226/511 (44.2)
Minerals§					
Median sodium (IQR) — mmol/liter	138.2 (136.1–140.3)	138.4 (136.6-140.4)	138.0 (136.0–140.0)	138.3 (135.0-141.2)	138.2 (136.1–140.2)
Median potassium (IQR) — mmol/liter	3.8 (3.5-4.2)	3.9 (3.6-4.2)	3.8 (3.5-4.1)	3.9 (3.6-4.1)	3.8 (3.5-4.2)
Median chloride (IQR) — mmol/liter	102.9 (99.7-105.6)	102.7 (99.7–105.3)	103.1 (99.8–106.0)	103.8 (100.8-107.0)	102.8 (99.6-105.3)

Lymphocytopenia was defined as a lymphocyte count of less than 1500 per cubic millimeter. Thrombocytopenia was defined as a platelet count of less than 150,000 per cubic millimeter. To convert the values for creatinine to milligrams per deciliter, divide by 88.4.

Guan et al. NEJM 2020

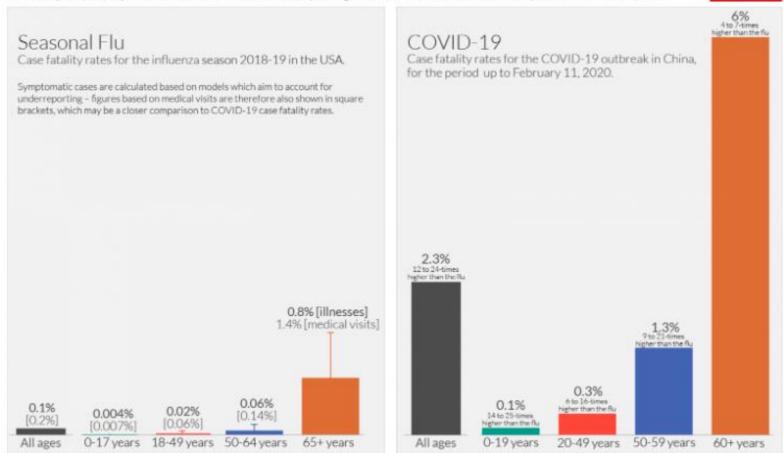
[†] Data regarding the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (Pao2:Fio2) were missing for 894 patients (81.3%)

[±] Data regarding hemoglobin were missing for 226 patients (20.6%)

Data were missing for the measurement of sodium in 363 patients (33.0%), for potassium in 349 patients (31.8%), and for chloride in 392 patients (35.7%).

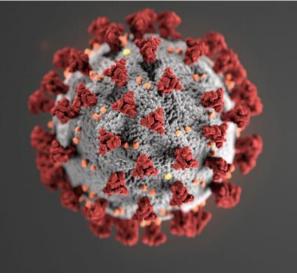
Influenza vs COVID-19

	Influenza	COVID-19
Clinical Presentation		
Onset	Sudden	Gradual
Fever, cough, body aches	Common	Common
Rhinorrhea/congestion	Sometimes	Rare
Secondary bacterial pneumonia	Common	Rare
Risk for severe infection	Children, pregnant, elderly, comorbidities, immunosuppressed	Older age and underlying conditions (cardiopulmonary)
Transmission		
Incubation Period	Short	Up to 14 days
Serial Interval (time between successive cases)	3 days	5-6 days
Pre-symptomatic	Major driver	Possible
R0	1.3	2.5


WHO.int

Influenza vs COVID-19

Case fatality rates: COVID-19 vs. US Seasonal Flu


Case fatality rate (CFR) is specific to a location and time. It is calculated by dividing the total number of deaths from a disease by the number of confirmed cases.

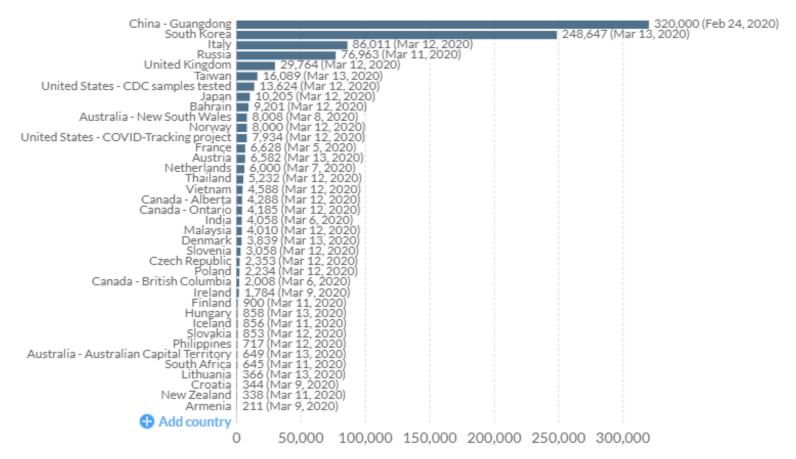
Data: Novel Coronavirus Preumonia Emergency Response Epidemiology Team. Vital surveillance: the epidemiological characteristics of an authorist of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Weekl
US influenza data is sourced from the US Centers for Disease Control and Prevention (CDC).

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser,

NOVEL CORONAVIRUS (COVID-19)

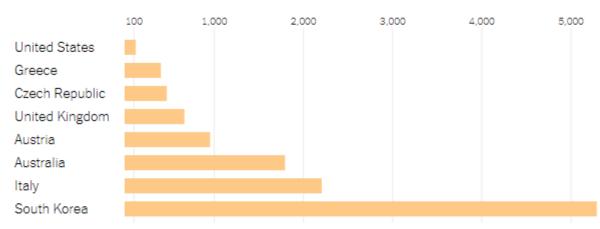
TESTING

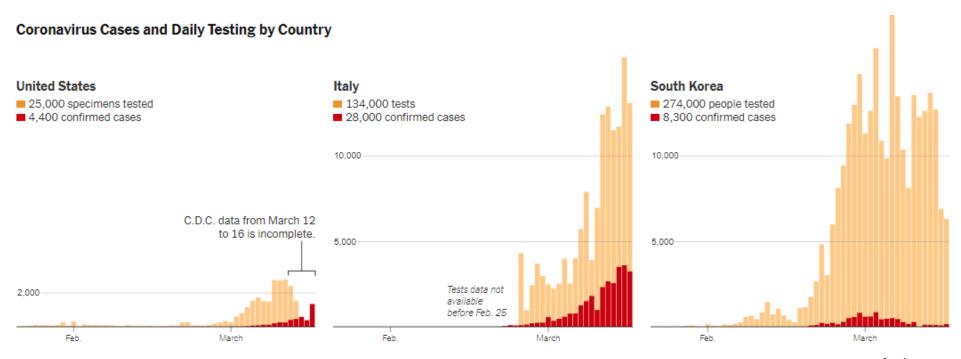

Department of Internal Medicine Division of Infectious Diseases

Total Tests

Total COVID-19 tests performed by country

Most recent data available from official sources as of 13 March 2020 - 9.00GMT




Source: Our World in Data based on official country reports

CC BY

Total tests

Coronavirus Tests Per One Million People

Available testing

- Qualitative molecular assays (PCR) in respiratory samples
- For any testing for respiratory pathogens, sample collection has a critical impact on the quality of the result. A poorly collected NP swab can contribute to false negative results
- Patients being tested for COVID-19 should also have routine testing performed for common pathogens with overlapping symptoms (i.e. Influenza/RSV)
 - Co-infection rate with other respiratory viruses <=2%

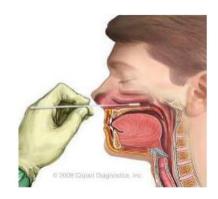
Testing Criteria

Clinicians should use their judgment to determine if a patient has signs and symptoms compatible with COVID-19 and whether the patient should be tested:

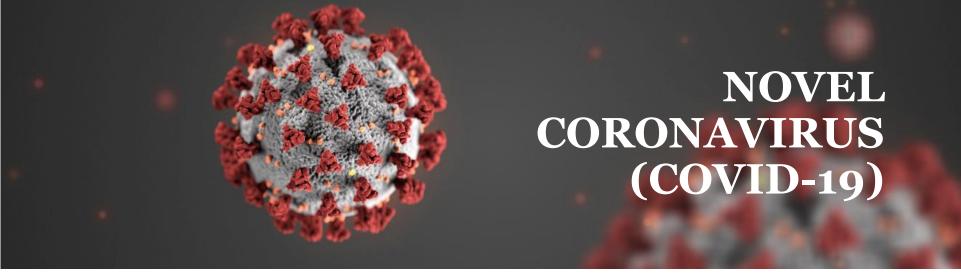
- Outpatient and Emergency Medicine
 - · Compatible symptoms: cough, fever, difficulty breathing
 - Epidemiologic link: any persons (including healthcare workers) who have had close contact with a laboratory-confirmed COVID-19 patient within 14 days of symptom onset, a history of travel from affected geographic areas within 14 days of symptom onset(China, Iran, Most of Europe, Japan, South Korea)

Inpatient

 Requires compatible symptoms(same as above), epidemiologic link(same as above), and negative respiratory viral panel (RVP) with no other etiology for symptoms


How to test at BJH

- Testing can be ordered in Epic using "COVID-19 Coronavirus" (Lab Number LAB4920)
- Lab Medicine Resident (LMR) will contact the ordering provider to review the case.
 - If the order is denied and the ordering provider disagrees with LMR, the discussion can be escalated to the ID attending on call.
- IP is automatically notified
- Microbiology can assist with collection instructions.
- Testing is done in-house or as send out to Quest, LabCorp or University of Washington depending on supply and availability


Specimens:

- Nasopharyngeal swab (NP)
- BAL, Tracheal aspirate, Sputum,
 Nasopharyngeal wash/aspirate,
 Nasal aspirate (if available): 2-3 mL
 in a sterile container.

Transport to the laboratory promptly.

INFECTION PREVENTION

BJH Employee Travel Restrictions As of 3/17/2020

Travel Destinations Requiring Employee Furlough			
Region			
China	Seattle/King County, Washington (U.S.)		
Iran	Northern California (Bay Area) (U.S.)		
Japan	Westchester County, New York (U.S.)		
South Korea	New York City, New York (U.S.)		
Egypt	Eagle, Summit, Pitkin and Gunnison counties, Colorado (U.S.)		
*Europe	Utah (ski resorts)		
	Ocean or river cruise		

*Europe includes Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, Monaco, San Marino and Vatican City.

Travel Destinations Requiring Employee Masking			
Region			
Massachusetts (U.S.)	Louisiana (U.S.)		
Florida (U.S.)	New Jersey (U.S.)		
Georgia (U.S.)			

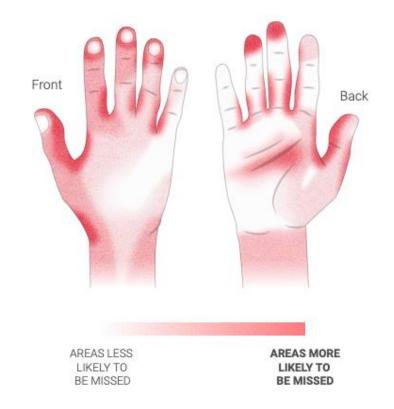
Travel Destinations OH Will Assess Need for Masking				
Region				
Washington state (U.S.) outside King County/Seattle	Oregon (U.S.)			
California (U.S.) outside Northern California (Bay Area)	Chicago			
New York state (U.S.) outside Westchester County or New York City				
Colorado (U.S.) outside Eagle, Summit, Pitkin and Gunnison counties				

Patient Disposition

Inpatient

- Placement on COVID-19 precautions and transfer (call patient placement for transfer) to COVID unit
- Arranged by the ordering provider
- Any inpatient tested for COVID is put in a NPV room in the MICU (up to 3 patients) and 8200 for more than 3 patients
- Non critically ill COVID patients will be cohorted on 5200

Outpatient

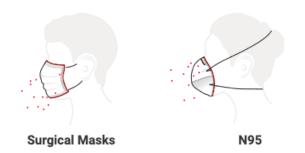

Medically stable patients are instructed in home quarantine by ordering provider

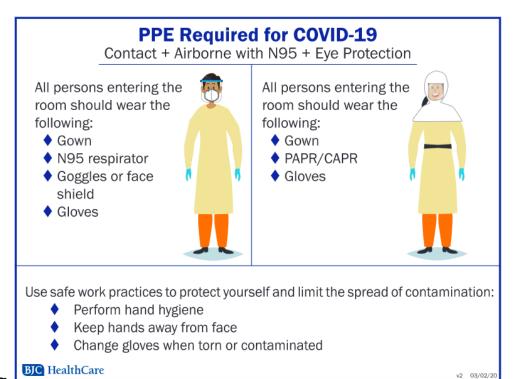
Emergency Department

- Medically stable patients are instructed in home quarantine by ordering provider
- If requiring admission, patients must be placed on COVID-19 precautions and transfer to COVID unit (call patient placement to arrange transfer)

Hand hygiene

- Wash your hands often with soap and water for at least 20 seconds
- If soap and water are not readily available, use an alcohol-based hand sanitizer with at least 60% alcohol
- Coronavirus has an outer lipid membrane layer that can be dissolved by soap


South China Morning Post


PPE

Evaluating PUI or confirmed COVID-19 case:

- Standard precautions
- Contact precautions
- Facemask
- Eye protection

Airborne isolation: only if undergoing aerosol generating procedures – intubation, bronchoscopy, nebulization

South China Morning Report

Safe Doffing

Removing Personal Protective Equipment (PPE)

Gloves

- · Outside of gloves is contaminated!
- Grasp outside of glove with opposite gloved hand, peel off.

- · Slide fingers of ungloved hand under remaining glove at wrist without touching outside of glove.
- · Peel glove off over first glove.
- · Discard gloves in waste container.
- If wearing gown and gloves can remove together (see gown removal).

Goggles or Face Shield

- · Outside of goggles or face shield is contaminated!
- · To remove, handle by head band or ear pieces.
- · Clean according to facility guidelines, place in designated receptacle for reprocessing or discard in waste container.

Gown

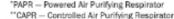
- Gown front and sleeves are contaminated!
- · Use clean hands to unfasten back ties (if needed).
- · Pull away from neck and shoulders; break neck/back ties.
- Turn gown inside out. Can remove gloves with gown.
- Fold or roll into a bundle and discard.

Isolation Mask, N95 Respirator/PAPR*/CAPR**

- Front of mask/respirator is contaminated do not touch!
- · Grasp bottom, then ties or elastics and remove.
- Discard in waste container.

Hand Hygiene

· Perform hand hygiene after removal of PPE.

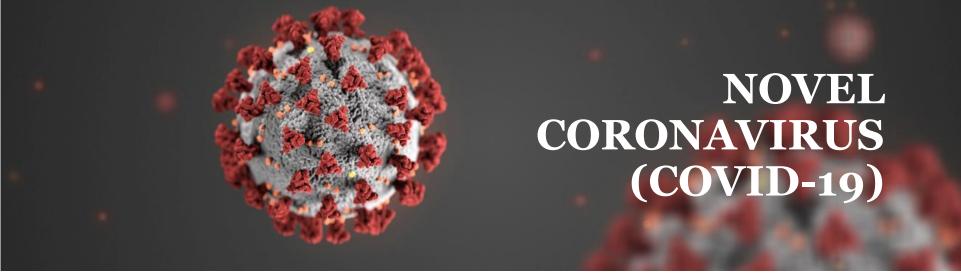


N95 Reuse Policy

- Due to increased international demand, BJC Healthcare is experiencing a shortage of N95 respirators.
- Employees needing an N95 for their task(s) should obtain an appropriate respirator from their unit leader(s), along with paper bag and instructions for reuse:
 - Write first and last name on paper bag
 - Use N95 per standard protocol
 - After use, remove N95 per standard doffing sequence and place in pre-labeled paper bag for reuse
 - Discard if: Visibly soiled, moist or wet, used during aerosolgenerating procedures, used for patient on contact isolation with multi-drug resistant organism, used for patient on contact isolation for active varicella zoster virus or herpes zoster

Environmental cleaning

- Cleaning and disinfection practices and products should be used for routine cleaning of COVID-19 patient rooms and equipment.
- EPA requires cleaning products have a label claim for emerging pathogens or for coronaviruses, influenza and other respiratory viruses.
- PDI wipes, our most common hospital disinfectant, have this label claim.
- All other BJC-approved disinfectants meet this criteria under standard purchasing practices.

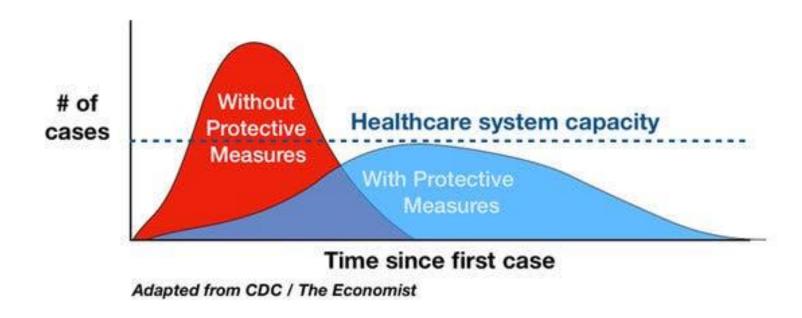


Biocidal agent	Concentration	Virus	Strain / isolate	Exposure time	Reduction of viral infectivity	Reference
					(log ₁₀)	
Ethanol	95%	SARS-CoV	Isolate FFM-1	30 s	≥ 5.5	[29]
	85%	SARS-CoV	Isolate FFM-1	30 s	≥ 5.5	[29]
	80%	SARS-CoV	Isolate FFM-1	30 s	≥ 4.3	[29]
	80%	MERS-CoV	Strain EMC	30 s	> 4.0	[14]
	78%	SARS-CoV	Isolate FFM-1	30 s	≥ 5.0	[28]
	70%	MHV	Strains MHV-2	10 min	> 3.9	[30]
			and MHV-N			
	70%	ccv	Strain I-71	10 min	> 3.3	[30]
2-Propanol	100%	SARS-CoV	Isolate FFM-1	30 s	≥ 3.3	[28]
	75%	SARS-CoV	Isolate FFM-1	30 s	≥ 4.0	[14]
	75%	MERS-CoV	Strain EMC	30 s	≥ 4.0	[14]
	70%	SARS-CoV	Isolate FFM-1	30 s	≥ 3.3	[28]
	50%	MHV	Strains MHV-2	10 min	> 3.7	[30]
	30%	MITTY	and MHV-N	TO IIIIII	> 3.7	[30]
	50%	ccv	Strain I-71	10 min	> 3.7	[30]
2 December of		SARS-CoV		30 s		
2-Propanol and	45% and 30%		Isolate FFM-1		≥ 4.3	[29]
1-propanol	0.00	SARS-CoV	Isolate FFM-1	30 s	≥ 2.8	[28]
Benzalkonium chloride	0.2%	HCoV	ATCC VR-759	10 min	0.0	[31]
			(strain OC43)			
	0.05%	MHV	Strains MHV-2	10 min	> 3.7	[30]
			and MHV-N			
	0.05%	CCV	Strain I-71	10 min	> 3.7	[30]
	0.00175%	CCV	Strain S378	3 d	3.0	[32]
Didecyldimethyl ammonium chloride	0.0025%	ccv	Strain S378	3 d	> 4.0	[32]
Chlorhexidine	0.02%	MHV	Strains MHV-2	10 min	0.7-0.8	[30]
digluconate			and MHV-N			
	0.02%	CCV	Strain I-71	10 min	0.3	[30]
Sodium hypochlorite	0.21%	MHV	Strain MHV-1	30 s	≥ 4.0	[33]
Journal Hypotenius III	0.01%	MHV	Strains MHV-2	10 min	2.3-2.8	[30]
	0.01,0		and MHV-N		2.5 2.0	[50]
	0.01%	ccv	Strain I-71	10 min	1.1	[30]
	0.001%	MHV	Strains MHV-2	10 min	0.3-0.6	[30]
	0.001/0		and MHV-N	10 111111	0.5 0.0	[50]
	0.001%	ccv	Strain I-71	10 min	0.9	[30]
Uhidengan paravida	0.5%	HCoV	Strain 229E	1 min	> 4.0	
Hydrogen peroxide Formaldehyde	1%	SARS-CoV	Isolate FFM-1	2 min	> 4.0	[34] [28]
	0.7%	SARS-COV	Isolate FFM-1	2 min	> 3.0	
		MHV	Isotate FFM-1			[28]
	0.7%		Charles I 74	10 min	> 3.5	[30]
	0.7%	CCV	Strain I-71	10 min	> 3.7	[30]
	0.009%	ccv		24 h	> 4.0	[35]
Glutardialdehyde	2.5%	SARS-CoV	Hanoi strain	5 min	> 4.0	[36]
	0.5%	SARS-CoV	Isolate FFM-1	2 min	> 4.0	[28]
Povidone iodine	7.5%	MERS-CoV	Isolate HCoV-EMC/2012	15 s	4.6	[37]
	4%	MERS-CoV	Isolate HCoV-EMC/2012	15 s	5.0	[37]
	1%	SARS-CoV	Hanoi strain	1 min	> 4.0	[36]
	1%	MERS-CoV	Isolate HCoV-EMC/2012	15 s	4.3	[37]
	0.47%	SARS-CoV	Hanoi strain	1 min	3.8	[36]
	0.25%	SARS-CoV	Hanoi strain	1 min	> 4.0	[36]
	0.23%	SARS-CoV	Hanoi strain	1 min	> 4.0	[36]
	0.23%	SARS-CoV	Isolate FFM-1	15 s	≥ 4.4	[38]
	0.23%	MERS-CoV	Isolate HCoV-EMC/2012	15 s	≥ 4.4	[38]

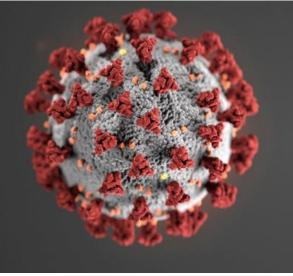
SARS - Severe Acute Respiratory Syndrome; MERS - Middle East Respiratory Syndrome; MHV - mouse hepatitis virus; CCV - canine coronavirus; HCoV = human coronavirus.

Kampf G, et al. J Hosp. Infect 2020; 31 January

PREVENTING SPREAD


Preventing spread

- Diligent hand washing with soap and water.
- Respiratory etiquette
- Avoiding touching the face
- Social distancing and avoiding close contact with ill individuals
- Cleaning and disinfecting objects and surfaces that are frequently touched.



Last modified 3/17/20

Community mitigation

Last modified 3/17/20

NOVEL CORONAVIRUS (COVID-19)

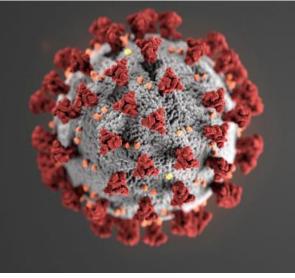
TREATMENT AND RESEARCH

Therapeutic interventions and goals

- No approved drugs
- Experimental: remdesivir, combination lopinavir/ritonavir, therapeutic antibodies
- Vaccines

Immediate Goals	Intermediate Goals	Long-term goals
Diagnostics: RNA assays, antibody & antigen assays, point of care detection	Diagnostics: Multiplex diagnostic platforms	Diagnostics: Prognostic markers
Therapeutics: Remdesivir, favipiravir, chloroquine, plasma, TCM	Therapeutics: intravenous immunoglobulin (IVIg)	Therapeutics: Innovative approaches (CRISPR-CAS; RNAi; Cell-based; positive hits from library screening)
Vaccines: Development of animal models	Vaccines: mRNA candidates and candidate viral vectors	Vaccines: inactivated candidates and subunit candidates

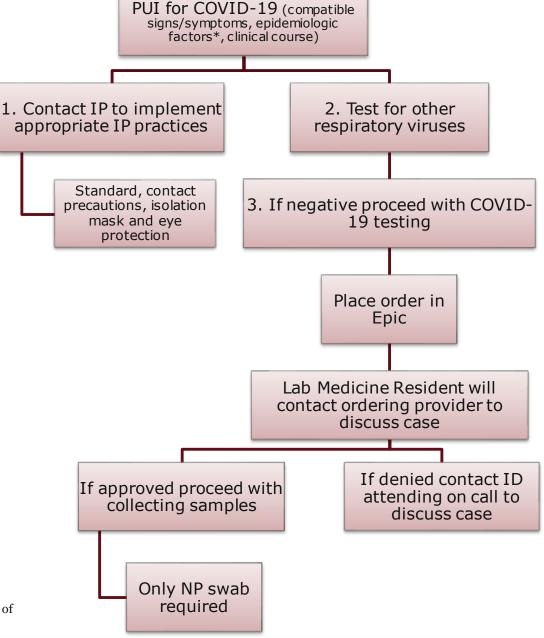
WHO.int Last modified 3/17/20


Management Options

- Methylprednisolone: No benefit for SARS or MERS, prolonged shedding
- IVIG/Convalescent Plasma: Studies starting, not yet available in US (no COVID-19 Ab in IgIV)
- Lopinavir-Ritonavir
- Chloroquine
- IL6 Blockers: Tocilizumab, TZLS-501
- Remdesivir
- Others
 - o ASCo9/ritonavir, lopinavir/ritonavir with or without umifenovir
 - o ASCo9/oseltamivir, ritonavir/oseltamivir, oseltamivir (high dose)
 - ACEI/ARB start vs. stop?
 - o Baloxavir marboxil/favipiravir and lopinavir/ritonavir in combination(s)
 - Hydroxychloroquine
 - o Darunavir/cobicistat alone or with lopinavir/ritonavir and thymosin α1 in combination(s)
 - o Interferon alfa-2b alone or in combination with lopinavir/ritonavir and ribavirin
 - Camrelizumab and thymosin

Remdesivir (GS-5734)

- Investigational agent, novel nucleotide analogue with activity against SARS-CoV-2 and related coronaviruses (SARS and MERS-CoV) both in vitro and animal studies
- Several randomized trials are underway to evaluate the efficacy for moderate or severe COVID-19
- Compassionate use in some institutions
 - Used for first COVID-19 case in the US without adverse events
- Clinical impact on COVID-19 remains unknown
- Not yet licensed or approved anywhere globally and has not been demonstrated to be safe or effective for any use


Holshue et al. NEJM 2020

NOVEL CORONAVIRUS (COVID-19)

FLOWCHART

Flowchart for COVID-19

^{*}Any persons, including HCW, who have had close contact with a laboratory-confirmed COVID-19 patient within 14 days of symptom onset, history of travel from affected geographic areas within 14 days of symptom onset.

When to contact Occupational Health?

- If you have an unprotected exposure (i.e., not wearing recommended PPE) to a confirmed or possible COVID-19 patient, contact your supervisor or occupational health immediately.
- If you develop symptoms consistent with COVID-19 (fever, cough, or difficulty breathing), do not report to work.
 Contact occupational health.